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Abstract: This study investigates the fractional (3 + 1)-dimensional Generalized B-type Kadomtsev-Petviashvili
Equation (GBKPE) using the Modified Extended Mapping Method (MEMM). The model plays a fundamental role
in describing nonlinear wave propagation in fluid dynamics and other complex media, particularly the evolution of
three-dimensional surfaces, shallow water waves, and diverse physical phenomena. By incorporating the local M-
fractional derivative, the equation captures non-local interactions and memory effects—features inaccessible to classical
derivatives—making it ideal for modeling long-range disturbances and hereditary properties. The primary objective
is to derive novel exact solutions exhibiting complex dynamics in higher dimensions. Through MEMM, we obtain a
wide range of solutions, including dark and singular solitons, Jacobi elliptic functions, hyperbolic, exponential, and
singular periodic waves. Notably, some solutions exhibit previously unreported characteristics, underscoring the method’s
innovation. We analyze the impact of fractional parameters on wave profiles, supported by 2D, 3D, and contour plots to
visualize their dynamic behavior. A linear stability analysis further confirms the robustness of key solutions under small
perturbations, ensuring their physical relevance. The results demonstrate the efficacy of MEMM in solving fractional
GBKPE, significantly expanding the known analytical solutions. This work not only advances the understanding of
multidimensional nonlinear equations but also provides a foundation for future studies in wave dynamics, stability, and
applications to real-world systems like plasma physics and nonlinear optics.
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1. Introduction
The Nonlinear Evolution Equations (NLEEs) provide accurate descriptions and simulations for nonlinear processes

that appear in domains including engineering, physics, computational mathematics, chemistry, and biological science.
Exploring traveling wave solutions offers important insights into the behavior of different physical systems. Utilizing
either analytical or numerical methods, these solutions enhance our understanding of wave dynamics across various
contexts, establishing them as a crucial focus in applied mathematics and physics [1–16]. Through the application
of diverse mathematical techniques to identify and examine these solutions, researchers can reveal the fundamental
mechanisms influencing complex systems [17–25].

In recent years, fractional calculus has become increasingly interesting to researchers because of its broad applicability
across various fields. Unlike traditional derivatives, fractional derivatives are characterized by their non-local properties
and ability to retain historical information [26, 27]. It is worth noting that different definitions of fractional derivatives,
such as Caputo, Riemann, Liouville and Hadamard forms, could also be employed to model memory effects in nonlinear
optical systems [28–30]. However, these types often involve nonlocal integral kernels, which increase computational
complexity and storage requirements in both analytical and numerical treatments. Also, these types use an integral form
for the fractional derivative and do not satisfy the main properties of ordinary integer derivatives, such as the chain rule,
product rule, and quotient rule. On the other hand, there are new kinds of fractional derivative which were presented by
some authors, such as conformable fractional derivatives [31], beta-fractional derivative [32], and M-fractional derivative
[33]. These novel operators have attracted considerable attention because they overcome some of the limitations of the
classical definitions of fractional derivatives. In particular, they provide more flexibility in modeling complex phenomena,
preserve certain desirable properties of the standard derivative, and can be effectively applied to various classes of
nonlinear partial differential equations. Consequently, these derivatives have become an active area of research, with
applications ranging from mathematical physics and and applied sciences (see [34–36]). Several analytical and numerical
approaches have been used to obtain solutions for fractional differential equations, such as the homotopy analysis method
[37], the Lagrange characteristic method [38], modified simple equation method [39], and the differential transformation
method [40]. Talra et al. used the Jacobi elliptic function technique to investigate solitary wave solutions associated with
the perturbed Chen-Lee-Liu equation [41].

A (3 + 1)-dimensional Generalized B-type Kadomtsev-Petviashvili Equation (GBKPE) was recently introduced to
describe the propagation of shallow water waves in water canals [33]. This generalized form enhances the GBKPE
equation’s ability to capture various wave phenomena and interactions, including anisotropy effects and higher-order
nonlinearities. The GBKPE has been studied through a considerable amount of research work. Ma et al. [42] extracted a
breather-travelling-wave solution, a kink soliton for GBKPE. Jian et al. [43] developed one- and two-periodic solutions
by utilizing the Riemann theta function for GBKPE. Ghayad et al. [44] solved the GBKPE using the improved modified
extended tanh function method to extract its exact solutions. While Yan et al. [45] obtained the GBKPE’s one- and
two-soliton solutions by using Hirota’s bilinear approach.

In the present study, we consider the fractional (3 + 1)-dimensional GBKPE:

Dσ , ω
M, t (ψx +ψy +ψz)+ζψxxxy +β (ψxψy)x + γψxx +δψzz = 0, (1)

where ψ(x, y, z, t) is a real differentiable function of the spatial coordinates x, y, z and temporal coordinate t, ζ
denotes dispersion coefficient, β represents the nonlinearity coefficient, γ represents the second-order x-direction diffusion
coefficient, δ represents the second-order z-direction diffusion coefficient, the subscripts denote the partial derivatives,
and Dσ , ω

M, t denotes the M-fractional derivative of order σ with the following definition [33].

Dσ , ω
M ψ(t) = lim

ε→0

ψ(tEω(εt−σ ))−ψ(t)
ε

, t > 0, (2)
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where 0 < σ ≤ 1, M shows the derived function includes a function called Mittag Leffler Eω(.)with one parameter ω > 0:

Eω(Z) =
∞

∑
k=0

Zk

Γ(ωk+1)
. (3)

When σ = ω = 1, the original form of the (3 + 1)-dimensional (GBKP) equation is obtained [42].
In this study, the Modified Extended Mapping Method (MEMM) is employed for the first time to analyze the

proposed model incorporating a local M-fractional derivative. The (3 + 1)-dimensional GBKPE is a generalized nonlinear
wave equation that goes beyond classical integrable models in order to capture intricate multidimensional interactions,
including those appearing in fluid dynamics, nonlinear optics, and plasma physics. Its multidimensionality makes it
especially well-adapted to model wave propagation phenomena in which the interactions take place in more than one
spatial direction, and in which time-dependent dispersion and nonlinearity play a crucial role. The implementation of
fractional derivatives, especially the localM-derivative, is motivated by the need to describememory effects and hereditary
characteristics of physical systems that are not accounted for by traditional integer-order derivatives. Fractional operators,
in contrast to classical derivatives, enable the more flexible and realistic modeling of nonlocal interactions, anomalous
diffusion, and wave attenuation. The local M-derivative, specifically, provides a computationally physically appealing
framework, maintaining locality while retaining the spirit of fractional-order dynamics. By using the fractional local
M-derivative in the GBKPE model, we obtain a more realistic and useful mathematical model for simulating real-world
phenomena in which long-range dependence and memory are essential features. It also makes the model more flexible
for practical use in nonlinear acoustic waves, geophysical fluid dynamics, and signal transmission in complicated media.
The primary novelty of this research is to discover new, distinct solutions for the proposed model that have not been
reported in previous studies. The suggested method was chosen over others due to its ability to generate a wider variety of
complex solutions, making it particularly effective for addressing various types of Nonlinear Partial Differential Equations
(NLPDEs). Consequently, new solutions, including Jacobi elliptic functions, dark and singular soliton wave solutions, as
well as hyperbolic, exponential, and singular periodic solutions, were successfully derived. These findings demonstrate
the efficiency and robustness of the mentioned approach. To demonstrate the true physical behavior of the model, contour,
2D, and 3D charts are also displayed.

The manuscript is organized as follows: A synopsis of the recommended approach is provided in Section 2. The
application of the recommended approach to the suggested model and the extraction of its solution are covered in Section
3. While Section 4 presents results and a Discussion of some obtained solutions. Stability analysis of the fractional PDE
in Section 5. A number of solutions are presented using graphical representations in Section 6. The work’s conclusion is
provided in Section 7. Lastly, a future recommendation is introduced in Section 8.

2. Overview of the methodology
This part presents a comprehensive outline of the MEMM (see [46, 47]). The general form of NLPDE is:

G
(

ψ, Dσ , ω
M, t ψ, ψx, ψy, ψz, ψxx, ψyy, ψzz, ψxt , ...

)
= 0. (4)

Algorithm 1 Assuming the solution of the previous equation is given as follows:

ψ(x, y, z, t) = W (ξ ), ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
, (5)
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where λ1, λ2 and λ3 are the wave number, while λ4 is the soliton frequency, and 0 < σ ≤ 1.
So, Eq. (4) can be rewritten as:

R(W , W ′, W ′′, . . .) = 0. (6)

Algorithm 2 The following expression is regarded as the cornerstone of the solution to the Eq. (6):

W (ξ ) =
N

∑
i=0

fiΘi(ξ )+
−N

∑
i=−1

g−iΘi(ξ )+
N

∑
i=2

hiΘi−2(ξ )Θ′(ξ )+
−N

∑
i=−1

r−iΘi(ξ )Θ′(ξ ), (7)

where Θ fulfills the subsequent auxiliary equation:

Θ′(ξ ) =
√
s0 + s1Θ(ξ )+ s2Θ2(ξ )+ s3Θ3(ξ )+ s4Θ4(ξ )+ s6Θ6(ξ ). (8)

Eq. (8) exhibits the following cases for its solution:
Case 1When s0 = s1 = s3 = s6 = 0, the next solutions are introduced:

Θ(ξ ) =
√
−s2

s4
sec
[
ξ
√
−s2

]
, s2 < 0, s4 > 0,

Θ(ξ ) =
√
−s2

s4
csc
[
ξ
√
−s2

]
, s2 < 0, s4 > 0,

Θ(ξ ) =
√
−s2

s4
sech [ξ

√
s2] , s2 > 0, s4 < 0.

Case 2When s1 = s3 = s6 = 0, s0 =
s2

2
4s4

, the following solutions are brought up:

Θ(ξ ) =
√

−s2

2s4
tanh

[
ξ
√

−s2

2

]
, s2 < 0, s4 > 0,

Θ(ξ ) =
√

s2

2s4
tan
[

ξ
√

s2

2

]
, s2 > 0, s4 > 0.

Case 3When s3 = s4 = s6 = 0, the following solutions are brought up:
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Θ(ξ ) =
√

s0

s2
sinh [ξ

√
s2] , s0 > 0, s2 > 0, s1 = 0,

Θ(ξ ) =
√

−s0

s2
sin
[
ξ
√
−s2

]
, s0 > 0, s2 < 0, s1 = 0,

Θ(ξ ) =− s1

2s2
+ eξ√s2 , s2 > 0, s0 =

s2
1

4s2
.

Case 4When s0 = s1 = s6 = 0, the following solutions are brought up:

Θ(ξ ) =−s2

s3

(
tanh

[
1
2

ξ
√
s2

]
+1
)
, s2 > 0, s3 =±2

√
s2s4,

Θ(ξ ) =−s2

s3

(
coth

[
1
2

ξ
√
s2

]
+1
)
, s2 > 0, s3 =±2

√
s2s4.

Case 5When s1 = s3 = 0, the following solutions are brought up:

Θ(ξ ) =

√√√√ 2s2sech2 (ξ
√
s2)

2
√

s2
4 −4s2s6 −

(√
s2

4 −4s2s6 + s4

)
sech2 (ξ

√
s2)

, s2 > 0,

Θ(ξ ) =

√√√√ 2s2 sec2 (ξ
√
−s2)

2
√

s2
4 −4s2s6 −

(√
s2

4 −4s2s6 − s4

)
sec2 (ξ

√
−s2)

, s2 < 0.

Case 6When s1 = s3 = 0, the following solutions are brought up (Table 1):

Table 1. Jacobi elliptic function solutions

No. s0 s2 s4 Θ(ξ )

1 1 −1−m2 m2 sn(ω, m) or cd(ω, m)

2 m2 −1 2−m2 −1 dn(ω, m)

3 −m2 2m2 −1 1−m2 nc(ω, m)

4 −1 2−m2 m2 −1 nd(ω, m)

5 m4 −2m3 +m2 − 4
m

−m2 +6m−1
mcn(ω|m)dn(ω|m)

csn(ω|m)2 +1

Algorithm 3 By using Eq. (6) and the homogeneous balancing principle, the integer N will be determined.
Algorithm 4 Substituting Eq. (7) through Eq. (8) into Eq. (6) produces a polynomial in Θ(ξ ). Subsequently, the

sum of terms with equivalent power will be set to zero to form a system of nonlinear equations.
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Algorithm 5 This system will be solved using Mathematica software.

3. Derivation of solutions
Initially, we will substitute by Eq. (3) into Eq. (1), hence Eq. (1) can be reformulated as follows:

ζλ 3
1 λ2W

(4)+
(
γλ 2

1 +δλ 2
3 +λ1λ4 +λ2λ4 +λ3λ4

)
W ′′+2βλ 2

1 λ2W
′W ′′ = 0. (9)

Setting the integral constant to zero after integrating Eq. (7) once with respect to ξ will yield:

ζλ 3
1 λ2W

(3)+
(
γλ 2

1 +δλ 2
3 +λ1λ4 +λ2λ4 +λ3λ4

)
W ′+βλ 2

1 λ2W
′2 = 0. (10)

For simplicity, we assume that:

W ′(ξ ) = H(ξ ). (11)

Therefore, Eq. (8) can be represented as follows:

ζλ 3
1 λ2H ′′+

(
γλ 2

1 +δλ 2
3 +λ1λ4 +λ2λ4 +λ3λ4

)
H +βλ 2

1 λ2H2 = 0. (12)

Subsequently, the principle of balance is applied to Eq. (12) between H2 and H ′′, which leads to the determination
of N = 2. As a result, the solution to Eq. (12) can be expressed as follows:

H(ξ ) = f0 + f1Θ(ξ )+ f2Θ(ξ )2 +
g1

Θ(ξ )
+

g2

Θ(ξ )2 +h2Θ′(ξ )+ r1
Θ′(ξ )
Θ(ξ )

+ r2
Θ′(ξ )
Θ(ξ )2 , (13)

where f0, f1, f2, g1, g2, h2, r1 and r2 are constants that will be calculated, which f2, g2, h2 and r2 ̸= 0 together.
Substituting Eq. (13) and Eq. (8) into Eq. (12), and subsequently equating the coefficients of terms with identical

powers to zero, yields a system that will be solved using Mathematica software. This procedure allows us to determine
the solutions of Eq. (1) with the constrain β ̸= 0 as shown below:

Case 1 s0 = s1 = s3 = s6 = 0, we get r1 = r2 = 0 and

(1.1) f0 = f1 = 0, f2 =−6ζλ1s4

β
, g1 = g2 = h2 = 0, λ4 =−

γλ 2
1 +δλ 2

3 +4ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

(1.2) f0 =−4ζλ1s2

β
, f1 = 0, f2 =−6ζλ1s4

β
, g1 = g2 = h2 = 0, λ4 =−

γλ 2
1 +δλ 2

3 −4s2ζλ2λ 3
1

λ1 +λ2 +λ3
.

In light of result (1.1), Eq. (1) will have the following solutions:
(1.1.1) If s2 < 0 and s4 > 0, singular periodic form solutions are presented as demonstrated:

ψ1.1.1(x, y, z, t) =
6ζλ1

√
−s2

β
tan
[ (

λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ

)√
−s2

]
, (14)
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or

ψ1.1.1(x, y, z, t) =−6ζλ1
√
−s2

β
cot
[ (

λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ

)√
−s2

]
. (15)

(1.1.2) If s2 > 0 and s4 > 0, dark soliton form solution is presented as demonstrated:

ψ1.1.2(x, y, z, t) =
6ζλ1

√
s2

β
tanh

[ (
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

)
√
s2

]
. (16)

In light of result (1.2), Eq. (1) will have the following solutions:
(1.2.1) If s2 < 0 and s4 > 0, singular periodic kind are presented as demonstrated:

ψ1.2.1(x, y, z, t) =−4ζλ1s2

β

(
ξ − 3

2
√
−s2

tan
[

ξ
√
−s2

])
, (17)

or

ψ1.2.1(x, y, z, t) =−4ζλ1s2

β

(
ξ − 3

2
√
−s2

cot
[
ξ
√
−s2

])
, (18)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(1.2.2) If s2 > 0 and s4 > 0, dark soliton form solution is presented as demonstrated:

ψ1.2.2(x, y, z, t) =−4ζλ1s2

β

(
ξ − 3

2
√
s2

tanh [ξ
√
s2 ]

)
, (19)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

Case 2 s1 = s3 = s6 = 0, we get f1 = r1 = h2 = 0 and

(2.1) f0 =−ζλ1s2

β
, f2 =−6ζλ1s4

β
, g1 = g2 = r2 = 0, λ4 =−

γλ 2
1 +δλ 2

3 +2ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

(2.2) f0 =−ζλ1s2

β
, f2 = 0, g1 = 0, g2 =−3ζλ1s

2
2

2βs4
, r2 = 0, λ4 =−

γλ 2
1 +δλ 2

3 +2ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

(2.3) f0 =
2ζλ1s2

β
, f2 =−6ζλ1s4

β
, g1 = 0, g2 =−3ζλ1s

2
2

2βs4
, r2 = 0, λ4 =−

γλ 2
1 +δλ 2

3 +8ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

In light of result (2.1), Eq. (1) will have the following solutions:
(2.1.1) If s2 < 0 and s4 > 0, dark soliton form solution is presented as demonstrated:

ψ2.1.1(x, y, z, t) =
2ζλ1s2

β

(
ξ +

3√
−2s2

tanh
[

ξ
√
−s2

2

])
, (20)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.
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(2.1.2) If s2 > 0 and s4 > 0, singular periodic form solution is presented as demonstrated:

ψ2.1.2(x, y, z, t) =
2ζλ1s2

β

(
ξ − 3√

2s2
tan
[

ξ
√

s2

2

])
, (21)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

In light of result (2.2), Eq. (1) will have the following solutions:
(2.2.1) If s2 < 0 and s4 > 0, singular soliton form solution is presented as demonstrated:

ψ2.2.1(x, y, z, t) =
2ζλ1s2

β

(
ξ +

3√
−2s2

coth
[

ξ
√
−s2

2

])
, (22)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(2.2.2) If s2 > 0 and s4 > 0, singular periodic form solution is presented as demonstrated:

ψ2.2.2(x, y, z, t) =
2ζλ1s2

β

(
ξ +

3√
2s2

cot
[

ξ
√

s2

2

])
, (23)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

In light of result (2.3), Eq. (1) will have the following solutions:
(2.3.1) If s2 < 0 and s4 > 0, singular soliton form solution is presented as demonstrated:

ψ2.3.1(x, y, z, t) =
8ζλ1s2

β

(
ξ +

3
2
√
−2s2

coth
[

2ξ
√
−s2

2

])
, (24)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(2.3.2) If s2 > 0 and s4 > 0, singular periodic form solution is presented as demonstrated:

ψ2.3.2(x, y, z, t) =
8ζλ1s2

β

(
ξ +

3
2
√

2s2
cot
[

2ξ
√

s2

2

])
, (25)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

Case 3 If s3 = s4 = s6 = 0, we get h2 = r1 = 0, r2 =±
3ζλ1

√
s0

β
and

(3.1) f0 = 0, f1 = f2 = 0, g1 =−3ζλ1s1

2β
, g2 =−3ζλ1s0

β
, λ4 =−

γλ 2
1 +δλ 2

3 +ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

(3.2) f0 =−ζλ1s2

β
, f1 = f2 = 0, g1 =−3ζλ1s1

2β
, g2 =−3ζλ1s0

β
, λ4 =−

γλ 2
1 +δλ 2

3 −ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

In light of result (3.1), Eq. (1) will have the following solutions:
(3.1.1) If s2 > 0, s0 > 0 and s1 = 0, dark and singular soliton form solutions are presented as demonstrated:
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ψ3.1.1(x, y, z, t) =
3ζλ1

√
s2

β
tanh

[
1
2

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

)
√
s2

]
, (26)

or

ψ3.1.1(x, y, z, t) =
3ζλ1

√
s2

β
coth

[
1
2

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

)
√
s2

]
. (27)

(3.1.2) If s2 < 0, s0 > 0 and s1 = 0, singular periodic form solutions are presented as demonstrated:

ψ3.1.2(x, y, z, t) =
3ζλ1

√
−s2

β
tan
[

1
2

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

)√
−s2

]
, (28)

or

ψ3.1.2(x, y, z, t) =
3ζλ1

√
−s2

β
cot
[

1
2

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

)√
−s2

]
. (29)

(3.1.3) If s2 > 0 and s0 =
s2

1
4s2

, an exponential solution is presented as demonstrated:

ψ3.1.2(x, y, z, t) =
6ζλ1

√
s2

β

 s1

s1 −2s2e
(

λ1x+λ2y+λ3z+λ4
Γ(ω+1)tσ

σ

)√
s2

 , (30)

where s1 −2s2e
(

λ1x+λ2y+λ3z+λ4
Γ(ω+1)tσ

σ

)√
s2 ̸= 0.

In light of result (3.2), Eq. (1) will have the following solutions:
(3.2.1) If s2 > 0, s0 > 0 and s1 = 0, dark and singular soliton form solutions are presented as demonstrated:

ψ3.2.1(x, y, z, t) =−ζλ1s2

β

(
ξ +

3
√
s2

tanh
[

1
2

ξ
√
s2

])
, (31)

or

ψ3.2.1(x, y, z, t) =−ζλ1s2

β

(
ξ +

3
√
s2

coth
[

1
2

ξ
√
s2

])
, (32)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(3.2.2) If s2 < 0, s0 > 0 and s1 = 0, singular periodic form solutions are presented as demonstrated:
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ψ3.2.2(x, y, z, t) =−ζλ1s2

β

(
ξ +

3√
−s2

tan
[
ξ
√
−s2

])
, (33)

or

ψ3.2.2(x, y, z, t) =−ζλ1s2

β

(
ξ +

3√
−s2

cot
[

1
2

ξ
√
−s2

])
, (34)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(3.2.3) If s2 > 0 and s0 =
s2

1
4s2

, an exponential solution is presented as demonstrated:

ψ3.2.3(x, y, z, t) =−ζλ1
√
s2

β

(
ξ
√
s2 +

6s1

s1 −2s2eξ√s2

)
, (35)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and s1 −2s2e

(
λ1x+λ2y+λ3z+λ4

Γ(ω+1)tσ
σ

)√
s2 ̸= 0.

Case 4 If s0 = s1 = s6 = 0, we get h2 = r1 = r2 = 0 and

(4.1) f0 = 0, f1 = 0, f2 =− (5s3 +6s4)ζλ1

β
, g1 = 0, g2 = 0, λ4 =−

γλ 2
1 +δλ 2

3 +4ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

(4.2) f0 =−4ζλ1s2

β
, f1 = 0, f2 =− (5s3 +6s4)ζλ1

β
, g1 = 0, g2 = 0, λ4 =−

γλ 2
1 +δλ 2

3 −4ζs2λ2λ 3
1

λ1 +λ2 +λ3
.

In light of result (4.1), Eq. (1) will have the following solutions:
(4.1.1) If s2 > 0 and s2

3 = 4s2s4, dark soliton form solution is presented as demonstrated:

ψ4.1.1(x, y, z, t) =−ζλ1 (5s2 +3
√
s2s4)

β
√
s4

(
−2Log

∣∣∣∣1− tanh
[

ξ
√
s2

2

]∣∣∣∣− tanh
[

ξ
√
s2

2

])
, (36)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(4.1.2) If s2 > 0 and s2
3 = 4s2s4, hyperbolic form solution is presented as demonstrated:

ψ4.1.2(x, y, z, t) =−ζλ1 (5s2 +3
√
s2s4)

β
√
s4

(
ξ
√
s2 +2Log

∣∣∣∣sinh
[

ξ
√
s2

2

]∣∣∣∣− coth
[

ξ
√
s2

2

])
, (37)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

In light of result (4.2), Eq. (1) will have the following solutions:
(4.2.1) If s2 > 0 and s2

3 = 4s2s4, dark soliton form solution is presented as demonstrated:

ψ4.2.1(x, y, z, t) =−4ζλ1

β

(
s2ξ +

ζλ1 (5s2 +3
√
s2s4)

β
√
s4

(
−2Log

∣∣∣∣1− tanh
[

ξ
√
s2

2

]∣∣∣∣− tanh
[

ξ
√
s2

2

]))
, (38)
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where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(4.2.2) If s2 > 0 and s2
3 = 4s2s4, hyperbolic form solution is presented as demonstrated:

ψ4.2.2(x, y, z, t) =−4ζλ1

β

(
ξ − ζλ1 (5s2 +3

√
s2s4)

β
√
s4

(
ξ
√
s2 +2Log

∣∣∣∣sinh
[

ξ
√
s2

2

]∣∣∣∣− coth
[

ξ
√
s2

2

]))
, (39)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

Case 5 If s1 = s3 = 0, we get f2 = h2 = r1 = r2 = 0 and

(5.1) f0 =−
2ζλ1

(
s2 ±

√
s2

2 −3s0s4

)
β

, f1 = 0, g1 = 0, g2 =−6ζλ1s0

β
, λ4 =−

δλ 2
3 + γλ 2

1 ±4ζλ 3
1 λ2

√
s2

2 −3s0s4

λ1 +λ2 +λ3
.

In light of result (5.1), Eq. (1) will have the following solutions:
(5.1.1) If s2 > 0, hyperbolic form solutions are presented as demonstrated:

ψ5.1.1(x, y, z, t) =
ζλ1

βs2

(3s0s4 −2s2
2 ±2s2

√
s2

2 −3s0s4

)
ξ −

3s0

√
s2

4 −4s2s6

2
√
s2

sinh [2ξ
√
s2]

 , (40)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(5.1.2) If s2 < 0, a periodic form solutions are presented as demonstrated:

ψ5.1.2(x, y, z, t) =
ζλ1

βs2

(3s0s4 −2s2
2 ±2s2

√
s2

2 −3s0s4

)
ξ −

3s0

√
s2

4 −4s2s6

2
√
−s2

sin
[
2ξ

√
−s2

] , (41)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

Case 6 If s1 = s3 = s6 = 0, we get f1 = g1 = h2 = r1 = r2 = 0 and

(6.1) f0 =−
2ζλ1

(
s2 ±

√
s2

2 −3s0s4

)
β

, f2 = 0, g2 =−6ζλ1s0

β
, λ4 =−

δλ 2
3 + γλ 2

1 ∓4ζλ 3
1 λ2

√
s2

2 −3s0s4

λ1 +λ2 +λ3
.

(6.2) f0 =−
2ζλ1

(
s2 ±

√
s2

2 −3s0s4

)
β

, f2 =−6ζλ1s4

β
, g2 = 0, λ4 =−

δλ 2
3 + γλ 2

1 ∓4ζλ 3
1 λ2

√
s2

2 −3s0s4

λ1 +λ2 +λ3
.

(6.3) f0 =−
2ζλ1

(
s2 ±

√
s2

2 +12s0s4

)
β

, f2 =−6ζλ1s4

β
, g2 =−6ζλ1s0

β
, λ4 =−

(
δλ 2

3 + γλ 2
1

∓4ζλ 3
1 λ2

√
s2

2 +12s0s4

)
λ1 +λ2 +λ3

.

In light of result (6.1), Eq. (1) will have the following solutions:
(6.1.1) If s0 = 1, s2 =−m2 −1 and s4 =m2, Jacobi elliptic function form solution is presented as demonstrated:

ψ6.1.1(x, y, z, t) =−2ζλ1

β

((
2−m2 +

√
m4 −m2 +1

)
ξ −3ε[ξ ]−3

cn[ξ ]dn[ξ ]
sn[ξ ]

)
, (42)

or
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ψ6.1.1(x, y, z, t) =−2ζλ1

β

((
2−m2 +

√
m4 −m2 +1

)
ξ −3ε[ξ ]+3dn[ξ ]sc[ξ ]

)
, (43)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

When putting m= 1 in Eq. (40), a singular soliton form solution is presented as demonstrated:

ψ6.1.1.1(x, y, z, t) =
4ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
+

3
2

coth
[

λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ

])
. (44)

When putting m = 0 in Eq. (40) and Eq. (41) respectively, singular periodic form solutions are presented as
demonstrated:

ψ6.1.1.2(x, y, z, t) =
4ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
+

3
2

cot
[

λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ

])
, (45)

and

ψ6.1.1.2(x, y, z, t) =
4ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
− 3

2
tan
[

λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ

])
. (46)

(6.1.2) If s0 =m2−1, s2 = 2−m2 and s4 =−1, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.1.2(x, y, z, t) =−2ζλ1

β

((
2−m2 +

√
m4 −m2 +1

)
ξ −3(m+1)ε[ξ ]+3

m(m+1)cn[ξ ]sn[ξ ]
dn[ξ ]

)
, (47)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

(6.1.3) If s0 = −m2, s2 = −1 + 2m2 and s4 = 1 −m2, a Jacobi elliptic function form solution is presented as
demonstrated:

ψ6.1.3(x, y, z, t) =−2ζλ1

β

((
−m2 +3m−1+

√
m4 −m2 +1

)
ξ −3mε[ξ ]

)
, (48)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

When putting m= 1 in Eq. (48), a dark soliton form solution is presented as demonstrated:

ψ6.1.3.1(x, y, z, t) =−4ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
− 3

2
tanh

[
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

])
. (49)

(6.1.4) If s0 =−1, s2 = 2−m2 and s4 =m2−1, a Jacobi elliptic function form solution is presented as demonstrated:
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ψ6.1.4(x, y, z, t) =−2ζλ1

β

((
2−m2 +

√
m4 −m2 +1

)
ξ −3ε[ξ ]

)
, (50)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

(6.1.5) If s0 =
1
4
, s2 =

1
2
(m2−2) and s4 =

m4

4
, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.1.5(x, y, z, t) =
ζλ1

2β

((
−2m2 +3m−2+

√
m4 −16m2 +16

)
ξ +6ε[ξ ]+

6cn[ξ ](dn[ξ ]+1)
sn[ξ ]

)
, (51)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

When putting m= 1 in Eq. (51), a singular soliton form solution is presented as demonstrated:

ψ6.1.5.1(x, y, z, t)

= − ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
−3coth

[
1
2

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

)])
.

(52)

In light of result (6.2), Eq. (1) will have the following solutions:
(6.2.1) If s0 = 1, s2 =−m2 −1 and s4 =m2, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.2.1(x, y, z, t) =−2ζλ1

β

((
−1−m2 +3m±

√
m4 −m2 +1

)
ξ −3ε[ξ ]

)
, (53)

or

ψ6.2.1(x, y, z, t) =−2ζλ1

β

((
−1−m2 +3m+

√
m4 −m2 +1

)
ξ −3ε[ξ ]+3m2 cn[ξ ]sn[ξ ]

dn[ξ ]

)
, (54)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

(6.2.2) If s0 =m2−1, s2 = 2−m2 and s4 =−1, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.2.2(x, y, z, t) =−2ζλ1

β

((
−1−m2 +

√
m4 −m2 +1

)
ξ +3m2ε[ξ ]

)
, (55)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

When putting m= 1 in Eq. (55), a dark soliton form solution is presented as demonstrated:

Volume 6 Issue 5|2025| 6161 Contemporary Mathematics



ψ6.2.2.1(x, y, z, t) =
2ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
−3tanh

[
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

])
. (56)

(6.2.3) If s0 = −m2, s2 = −1 + 2m2 and s4 = 1 −m2, a Jacobi elliptic function form solution is presented as
demonstrated:

ψ6.2.3(x, y, z, t) =
2ζλ1

β

[(
1−2m2 −

√
m4 −m2 +1

)
ξ − 3m2

m−1

(
ε[ξ ]− dn[ξ ]sn[ξ ]

cn[ξ ]

)]
, (57)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m< 1.

(6.2.4) If s0 =−1, s2 = 2−m2 and s4 =m2−1, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.2.4(x, y, z, t) =−2ζλ1

β

[(
2−m2 +

√
m4 −m2 +1

)
ξ −3(m+1)

(
ε[ξ ]− 3mcn[ξ ]sn[ξ ]

dn[ξ ]

)]
, (58)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

When putting m= 1 in Eq. (58), a dark soliton form solution is presented as demonstrated:

ψ6.2.4.1(x, y, z, t) =−4ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
+6tanh

[
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

])
, (59)

(6.2.5) If s0 =
1
4
, s2 =

1
2
(m2−2) and s4 =

m4

4
, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.2.5(x, y, z, t) =−ζλ1

2β

((
−4+8m2 −3m3 ±

√
m4 −16m2 +16

)
ξ −6m2ε[ξ ]− 6m2(dn[ξ ]−1)

sc[ξ ]

)
, (60)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

In light of result (6.3), Eq. (1) will have the following solutions:
(6.3.1) If s0 = 1, s2 =−m2 −1 and s4 =m2, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.3.1(x, y, z, t) =−2ζλ1

β

((
2−m2 +3m+

√
m4 +14m2 +1

)
ξ −3(m+1)ε[ξ ]−3

cn[ξ ]dn[ξ ]
sn[ξ ]

)
, (61)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

When putting m= 1 in Eq. (61), a singular soliton form solution is presented as demonstrated:
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ψ6.3.1.1(x, y, z, t)

= − 8ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
− 3

4
coth

[
2
(

λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ

)])
,

(62)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
.

(6.3.2) If s0 =m2−1, s2 = 2−m2 and s4 =−1, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.3.2(x, y, z, t)

= − 2ζλ1

β

((
−1−m2 +

√
m4 +14m2 +1

)
ξ − 3

m−1

(
(−m3 +m2 +1)ε[ξ ]−3m

cn[ξ ]sn[ξ ]
dn[ξ ]

))
,

(63)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m< 1.

(6.3.3) If s0 = −m2, s2 = −1 + 2m2 and s4 = 1 −m2, a Jacobi elliptic function form solution is presented as
demonstrated:

ψ6.3.3(x, y, z, t)

= − 2ζλ1

mβ

[(
−3+2m3 +2m+

√
m4 +14m2 +1

)
ξ +

3
m−1

(
(−m3 +m−1)ε[ξ ]−3m

dn[ξ ]sn[ξ ]
cn[ξ ]

)]
,

(64)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 <m< 1.

(6.3.4) If s0 =−1, s2 = 2−m2 and s4 =m2−1, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.3.4(x, y, z, t) =−2ζλ1

β

((
2−m2 ±

√
m4 −16m2 +16

)
ξ −3(m+2)ε[ξ ]+3m(m+1)

cn[ξ ]sn[ξ ]
dn[ξ ]

)
, (65)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 ≤m≤ 1.

(6.3.5) If s0 =
1
4
, s2 =

1
2
(m2−2) and s4 =

m4

4
, a Jacobi elliptic function form solution is presented as demonstrated:

ψ6.3.5(x, y, z, t) =−2ζλ1

m2β

((
−m4 +2m2 +3m−6+m2

√
m4 −16m2 +16

)
ξ +6ε[ξ ]+6

2m2 −1+dn[ξ ]
sc[ξ ]

)
, (66)

where ξ = λ1x+λ2y+λ3z+λ4
Γ(ω +1)tσ

σ
and 0 <m≤ 1.

When putting m= 1 in Eq. (66), a singular soliton form solutions is presented as demonstrated:
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ψ6.3.5.1(x, y, z, t)

=
2ζλ1

β

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ
−6coth

[
1
2

(
λ1x+λ2y+λ3z+λ4

Γ(ω +1)tσ

σ

)])
.

(67)

4. Stability analysis of the fractional PDE
Understanding the stability characteristics of nonlinear Partial Differential Equations (PDEs) is crucial for predicting

the long-term behavior of dynamical systems across various scientific domains. This section presents a rigorous linear
stability analysis of the proposed fractional-order PDE, which incorporates mixed partial derivatives and nonlinear
coupling terms. To analyze the stability of Eq. (1), we employ linear stability analysis by examining small perturbations
around a steady-state solution. Assume a solution of the form:

V = H (x, t)+A , (68)

where A represents a small perturbation.
Substituting (68) into (1) yields the linearized equation:

Dσ , µ
M, t (Hx +Hy +Hz)+ζHxxxy + γHxx +δHzz = 0. (69)

We consider solutions of the form:

H = Ψei(k1x+k2y+k3z)+ϖt , (70)

where Ψ is a small amplitude, ki (for i = 1, 2, 3) are wavenumbers in the x, y, and z directions respectively, and ϖ is the
growth rate.

The growth rate ϖ is given by:

ϖ =−
iΓ(µ +1)tσ−1

(
k2

1 (γ −ζ k1k2)+δk2
3
)

k1 + k2 + k3
. (71)

Then, the system exhibits neutral stability (Re(ϖ) = 0) for all wavenumbers (k1, k2, k3) satisfying k1 +k2 +k3 ̸= 0
(see Figures 1-2 (t = 2 and γ = δ = µ = 1)).
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Figure 1. 3D stability diagram for different values of σ showing stable (Re[ω]< 0), neutral stability (Re[ω] = 0) and unstable (Re[ω]> 0) zones with
wavenumbers k1, k2 when t = 2 and γ = δ = µ = 1

Figure 2. Stability regions showing Re[ω] and Im[ω] versus σ , with stable (Re[ω]> 0), neutral stability (Re[ω] = 0) and unstable (Re[ω]< 0) zones
when t = 2 and γ = δ = µ = 1
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5. Results and discussion
In this work, we applied the Modified Extended Mapping Method (MEMM) to the fractional (3 + 1)-dimensional

Generalized B-type Kadomtsev-Petviashvili Equation (GBKPE) and successfully obtained a wide spectrum of exact
analytical solutions. The solutions include dark soliton solutions, singular soliton solutions, Jacobi elliptic function
solutions, hyperbolic solutions, exponential solutions, and singular periodic solutions. Each of these forms exhibits
distinct physical characteristics and potential applications in nonlinear wave dynamics, particularly in plasma physics,
fluidmechanics, and nonlinear optics. The obtained dark solitons are characterized by a localized drop in amplitude against
a continuous background. Physically, these solutions are important in nonlinear optical systems such as optical fibers, fluid
dynamics, and plasma physics. The obtained singular soliton solutions are characterized by a sharp peak or divergence
in amplitude at certain points, and they appear in plasma environments and shallow water systems. The obtained Jacobi
elliptic function solutions describe periodic wave patterns whose shape depends on the elliptic modulus parameter. These
solutions bridge the gap between purely periodic and solitary waveforms, reducing to hyperbolic functions when the
modulus approaches unity. Singular periodic solutions exhibit periodic spatial profiles with singularities at certain points
within each period. These profiles can be associated with periodic energy focusing or regular occurrence of extreme
events in nonlinear systems, such as plasma physics and hydrodynamic systems. Also, the linear stability analysis was
performed to assess the robustness of the obtained solutions against small perturbations. By introducing a perturbation
into the solution and linearizing the governing equations, the resulting eigenvalue problem was examined. The sign of
the real part of the eigenvalues determined the stability criterion: negative real parts indicated that perturbations decay
over time, confirming the stability of the solution, whereas positive values implied instability. The analysis revealed that,
within the chosen parameter regime, the solutions remain stable under small disturbances, demonstrating their physical
relevance and persistence in practical scenarios.

6. Graphical representation for some solutions
This section contains numerical simulations of some gained solutions to show their physical manifestation with

three different values for σ . 3-D, contour, and 2-D plots are provided for some of the gained solutions by choosing
suitable values of the relevant model parameters. Figure 3 displays the singular periodic solution of Eq. (14) when
assuming λ1 = 0.6, λ2 = 0, λ3 = 0, γ = 0.85, ζ = 0.7, β = 0.75, δ = 0.8, s2 = −0.55, ω = 0.65 and x from −25
to 25. These solutions exhibit periodic oscillations but contain singularities at specific points, representing wave profiles
with repeating patterns interrupted by discontinuities or blow-ups. Such behavior often models phenomena like breaking
waves or localized instabilities in nonlinear media. Figure 4 displays the dark soliton solution of Eq. (16) when assuming
λ1 = 0.5, λ2 = 0, λ3 = 0, γ = 0.8, ζ = 0.6, β = 0.7, δ = 0.9, s2 = 0.55, ω = 0.75 and x from −20 to 20. These are
localized waveforms that appear as dips or voids within a continuous wave background. The dark solitons maintain their
shape while propagating and exhibit phase shifts during interactions. They are commonly associated with systems where
energy or density is depleted locally, such as in optical fibers or Bose-Einstein condensates. Figure 5 displays the singular
soliton solution of Eq. (27) when assuming λ1 = 0.7, λ2 = 0, λ3 = 0, γ = 0.75, ζ = 0.8, β = 0, δ = 0.85, s2 = 0.6,ω = 0.7
and x from −20 to 20. These solutions combine soliton-like propagation with singularities, representing sharp, localized
peaks that move without changing their overall profile but feature blow-ups at finite points. They are often linked to
phenomena such as extreme waves or localized energy concentrations in non-linear systems.
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Figure 3. 3D, contour and 2D plots of Eq. (14) at different values of σ when λ1 = 0.6, λ2 = 0, λ3 = 0, γ = 0.85, ζ = 0.7, β = 0.75, δ = 0.8, s2 =
−0.55, ω = 0.65
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Figure 4. 3D, contour and 2D plots of Eq. (16) at different values of σ when λ1 = 0.5, λ2 = 0, λ3 = 0, γ = 0.8, ζ = 0.6, β = 0.7, δ = 0.9, s2 =
0.55, ω = 0.75
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Figure 5. 3D, contour and 2D plots of Eq. (27) at different values of σ when λ1 = 0.7, λ2 = 0, λ3 = 0, γ = 0.75, ζ = 0.8, β = 0, δ = 0.85, s2 =
0.6, ω = 0.7

7. Conclusion
In this work, we investigated the fractional (3 + 1)-dimensional generalized B-type Kadomtsev-Petviashvili equation,

a well-known integrable model in nonlinear wave theory with significant applications in describing wave propagation
phenomena in fluid dynamics. The novelty of this study lies in the implementation of the Modified Extended Mapping
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Method (MEMM) alongside the local M-fractional derivative, a relatively recent fractional operator that preserves locality
while capturing essential memory effects. By employingMEMMunder the localM-fractional framework, we successfully
derived a wide class of exact solutions, including Jacobi elliptic function solutions, hyperbolic and exponential function
solutions, as well as dark and singular soliton solutions. The study of exact and soliton solutions to this equation plays
a critical role in understanding the behavior of complex waves. Furthermore, we conducted a linear stability analysis to
examine the robustness of the obtained solutions against small perturbations. The stability study confirmed that certain
solution classes, particularly the soliton solutions, remain stable under controlled parameter regimes, reinforcing their
physical relevance. To illustrate the dynamic behavior and structural properties of the solutions, several representative
caseswere visualized through contour, 2D, and 3D graphical representations. These findings not only expand the repertoire
of known analytical solutions to the fractional nonlinear model but also provide deeper insight into the impact of fractional-
order dynamics on wave propagation.

8. Future directions
8.1 Future recommendations

Future research can focus on extending the current work by using other forms of fractional derivatives—like
conformable fractional derivative or β -fractional derivative—on the (3 + 1)-dimensional generalized B-type Kadomtsev-
Petviashvili equation, so that comparisons between solution behaviors in different fractional frameworks can be made.
Lastly, the application of the model to real physical systems in plasma physics, fluid dynamics, or nonlinear optics may
ascertain its physical validity. Consideration of coupled or further generalized forms of the equation may also yield even
richer structures of solutions, like multi-soliton and rogue wave behaviors under the influence of fractional effects.
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