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Abstract: The present paper offers a systematic study of the dispersive concatenation model, with special emphasis
on the Kerr law nonlinearity that governs the optical interactions of photons in optical fibers. The model is studied in
the environment of multiplicative white noise via the use of Itô Calculus, a stochastic method that significantly impacts
the system’s dynamics. To deal with the resulting complexities generated both in the form of the noise and the nonlinear
dispersion, the F-expansion method is used to find the solutions of the governing equations. The strong mathematical
background enables the successful identification of a wide range of optical soliton solutions, while special emphasis is
given to their stability and their conditions of propagation in such environments.
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1. Introduction
The concatenation model, presented in 2014, is another important nonlinear evolution equation in the optical physics

domain. It was synthesized as an integration of three already known systems, namely the Nonlinear Schrödinger Equation
(NLSE), the Lakshmanan-Porsezian-Daniel (LPD) model, and the Sasa-Satsuma equation. The composite model, in
essence, does capture basic nonlinear and dispersive properties that govern the optical fiber’s pulse propagation. A later
extension of the model, the so-called dispersive concatenation model, improved the system further through the emphasis
of the higher-order dispersion through the integration of the Schrödinger-Hirota Equation (SHE), the LPD model, and the
fifth-order NLSE [1, 2].

These models, since their introduction, have been of significant interest, particularly concerning exact optical soliton
solutions and the corresponding conservation laws. Utilizing methods such as the multipliers approach, researchers have
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studied conserved quantities such as energy and momentum, thus expanding the awareness of the dynamics of the soliton
in the context of various physical phenomena.

A significant amount of research has examined various versions of the concatenation model, including those with
and without Self-Phase Modulation (SPM), whereas Spatio-Temporal Dispersion (STD) and Chromatic Dispersion (CD)
are also considered. These factors are critical in the correct simulation of long-distance pulse evolution and addressing
problems such as the constraint of bandwidth in optical communications. Stable soliton solutions have been realized in
scenarios involving both Kerr and power-law SPM, and in the absence of SPM, evidencing the robustness of the solitons in
a wide range of nonlinear conditions. In the various analytical approaches, the Laplace-Adomian decomposition method
has proved useful in the estimation of soliton solutions and examining their dynamics in complicated environments.

Building on this foundation, the present study explores the dispersive concatenation model under the influence of
Multiplicative White Noise (MWN). The stochastic nature of MWN is modeled using Itô calculus, providing a rigorous
framework for accounting for environmental randomness. This approach reflects the practical reality of optical systems,
where fluctuations due to quantum, thermal, or external factors cannot be ignored.

To derive soliton solutions within this stochastic setting, we apply the F-expansion method, a robust analytical
technique that expresses solutions in terms of Jacobi elliptic functions. In the limiting case (modulus approaching unity),
these solutions reduce to classical hyperbolic solitons. The results reveal a broad spectrum of soliton profiles with varying
stability characteristics, presented in detail in the following sections.

The novelty of this study lies in applying the dispersive concatenation model under Kerr-type SPM and stochastic
perturbations, a combination that has received limited attention in the literature. The use of the F-expansion method in
this context enables the construction of diverse soliton families and offers deeper insight into soliton dynamics in noisy
environments.

Physically, the findings illustrate how solitons can persist and evolve under realistic, noise-affected conditions. The
interaction between dispersion and stochasticity is particularly relevant for designing resilient optical communication
systems, where maintaining signal shape and integrity is essential. The results offer theoretical guidance for improving
long-distance, high-capacity data transmission in fiber networks.

Thus, this work advances both the modeling framework and solution methodology for stochastic nonlinear optics.
It lays the groundwork for further exploration of soliton behavior in complex, noise-dominated media and points toward
new directions in optical system design and photonic device engineering.

1.1 Governing model
In this study, we introduce a novel dispersive concatenationmodel that incorporates the Kerr law of SPM and accounts

for MWN effects. The governing equation is formulated within the framework of Itô calculus, which is widely used to
handle stochastic differential equations involving random perturbations. The model is given by [3]:

iqt +aqxx +b |q|2 q− iδ1

[
σ1qxxx +σ2 |q|2 qx

]
+σqWt(t)

+δ2

[
σ3qxxxx +σ4 |q|2 qxx +σ5 |q|4 q+σ6 |qx|2 q+σ7q2

xq∗+σ8q∗xxq2
]

− iδ3

[
σ9qxxxxx +σ10 |q|2 qxxx +σ11 |q|4 qx +σ12qqxq∗xx +σ13q∗qxqxx +σ14qq∗xqxx +σ15q2

xq∗x
]
= 0.

(1)

Here, q(x, t) represents the complex optical field envelope, with x and t denoting the spatial and temporal coordinates,
respectively. The coefficients a and bmodel the CD and theKerr nonlinearity, forming the basis of the NLSE. Higher-order
effects are included via the parameters δ1, δ2, δ3, corresponding to third-order, fourth-order, and fifth-order nonlinear
terms.

Contemporary Mathematics 5444 | Yakup Yildirim, et al.



The third-order contribution δ1 introduces qxxx and a nonlinear term |q|2 qx, reflecting third-order dispersion and
nonlinear dispersive effects. The fourth-order terms (δ2) bring in the terms of qxxxx, |q|2 qxx, and |q|4 q, enabling complex
nonlinear interactions that go beyond the standard models. The fifth-order terms (δ3), in turn, continue to enrich this
model further through high-order dispersive and nonlinear terms, such as qxxxxx and |q|4 qx, that capture the sophisticated
dynamics of ultrafast pulse propagation.

The stochastic disturbance is given by the expression σqWt(t), in terms of σ , the parameter that determines the
characteristics of the noise intensity, and the standard Wiener process is given below

W (t) =
∫ t

0
Λ(η)dW (η).

Here, Λ(η) is Gaussian white noise. This is the physical jitter inherent in the medium, including random variation
in refractive index that impacts the optical pulse’s dynamical evolution. These random variations in turn will change
the amplitude, shape, and robustness of solitons; therefore, including them is critical for realistic modeling in practical
applications, such as fiber lasers and communication systems in the presence of noise.

The combination of stochastic perturbations with deterministic nonlinear dynamics allows for an in-depth study of
the motion of solitons in applicable scenarios. Utilizing the Itô approach, this research carefully covers these deliberations
and lays the ground for deriving accurate analytical results in stochastic settings.

In the paragraphs that follow, we apply the F-expansion method in obtaining accurate soliton solutions and analyzing
their physical consequences. The approach offers a unified platform for the study of the stability and properties of the
solitons in the presence of noise in optical telecommunication systems.

2. FFF-expansion approach
The equation is given as

G(q, qx, qt , qxt , qxx, ...) = 0. (2)

Here, q(x, t) refers to the envelope of the optical field, considering the spatial parameter x in addition to the temporal
parameter t. The given mathematical expression summarizes the fundamental dynamics of the system, depicting the
evolution of the optical field considering different nonlinear and dispersive effects.

We introduce the transformation of the propagating wave described in the form

q(x, t) =U(ξ ), ξ = k(x− vt). (3)

Here, v is the velocity, k is the wave width, while ξ is the new variable. By substituting this transformation into
equation (2), the governing equation is reduced to an Ordinary Differential Equation (ODE) of the form

P(U, −kvU ′, kU ′, k2U ′′, ...) = 0. (4)

Step 1: To obtain exact solutions to equation (4), we assume a solution representation in the form
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U (ξ ) =
N

∑
i=0

BiF i (ξ ) , (5)

where Bi are constants to be determined and F(ξ ) satisfies the auxiliary equation

F ′ (ξ ) =
√

PF4 (ξ )+QF2 (ξ )+R. (6)

This equation provides a framework for constructing soliton solutions using known functions.
The functional forms of F(ξ ) corresponding to different types of soliton solutions are obtained from equation (6)

and summarized as follows:



F (ξ ) = sn(ξ ) = tanh(ξ ) , P = m2, Q =−(1+m2), R = 1, m → 1−,

F (ξ ) = ns(ξ ) = coth(ξ ) , P = 1, Q =−(1+m2), R = m2, m → 1−,

F (ξ ) = cn(ξ ) = sech(ξ ) , P =−m2, Q = 2m2 −1, R = 1−m2, m → 1−,

F (ξ ) = ds(ξ ) = csch(ξ ) , P = 1, Q = 2m2 −1, R =−m2 (1−m2) , m → 1−,

F (ξ ) = ns(ξ )±ds(ξ ) = coth(ξ )± csch(ξ ) , P =
1
4
, Q =

m2 −2
2

, R =
m2

4
, m → 1−,

F (ξ ) = sn(ξ )± icn(ξ ) = tanh(ξ )± isech(ξ ) , P =
m2

4
, Q =

m2 −2
2

, R =
m2

4
, m → 1−,

F (ξ ) =
sn(ξ )

1±dn(ξ )
=

tanh(ξ )
1± sech

, P =
m2

4
, Q =

m2 −2
2

, R =
m2

4
, m → 1−.

(7)

Here, sn(ξ ), cn(ξ ), dn(ξ ), ns(ξ ), and ds(ξ ) denote Jacobi elliptic functions associated with the modulus 0 < m < 1.
In the limit m → 1−, these functions reduce to hyperbolic functions, describing bright, dark, and singular solitons. The
constants Bi are determined based on the balancing principle applied to equation (4).

Step 2: Substituting expressions (5) and (6) into equation (4) results in an algebraic system of equations. Solving
this system allows for the determination of the unknown constants, including Bi, ensuring that the solutions satisfy the
original governing equation. These results provide an extensive classification of optical solitons, including bright solitons,
dark solitons, singular solitons, and complex-valued solutions, revealing the rich nonlinear wave dynamics governed by
equation (2).

3. Optical solitons
Equation (1) governs the optical field envelope, which is expressed as
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q(x, t) =U(ξ )eiϕ(x, t), (8)

where the variable transformation

ξ = k(x− vt), (9)

is introduced to represent the wave profile in a moving frame with velocity v. The corresponding phase function is given
by

ϕ(x, t) =−κx+ωt +σW (t)−σ2t +θ0. (10)

In this formulation, ω denotes the wave number, κ represents the soliton frequency, and θ0 is an arbitrary phase
constant. The parameter σ accounts for the noise coefficient, while v represents the velocity of the soliton. The termW (t)
corresponds to a Wiener process, modeling the influence of MWN in the system.

To derive the governing equations for the amplitudeU(ξ ) and the phase function ϕ(x, t), equation (8) is substituted
into equation (1). By separately equating the real and imaginary components, one obtains the following coupled equations:

k2 (10σ9κ3δ3 −6σ3κ2δ2 −3σ1κδ1 +a
)

U ′′+ k4 (σ3δ2 −5σ9κδ3)U (4)

+
(
κ4 (σ3δ2 −σ9κδ3)+σ1κ3δ1 −aκ2 +

(
σ2 −ω

))
U +(σ5δ2 −σ11κδ3)U5

+
(
κ2 ((σ10 +σ12 +σ13 −σ14 −σ15)κδ3 − (σ4 −σ6 +σ7 +σ8)δ2)−σ2κδ1 +b

)
U3

+ k2 ((σ4 +σ8)δ2 − (3σ10 +σ12 +σ13 −σ14)κδ3)U2U ′′

+ k2 ((2σ12 −2(σ13 +σ14)−σ15)κδ3 +(σ6 +σ7)δ2)UU ′2 = 0,

(11)

and

k
(
−5σ9κ4δ3 +4σ3κ3δ2 +3σ1κ2δ1 −2aκ − v

)
U ′

−σ9δ3k5U (5)− k3 (2κ (2σ3δ2 −5σ9κδ3)+σ1δ1)U (3)−σ11kδ3U4U ′

−σ10δ3k3U2U (3)−σ15δ3k3U ′3 − (σ12 +σ13 +σ14)δ3k3UU ′U ′′

− k (κ ((−3σ10 +σ12 −3σ13 +σ14 +σ15)κδ3 +2(σ4 +σ7 −σ8)δ2)+σ2δ1)U2U ′ = 0.

(12)

From equation (12), the velocity is established:
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v = 4σ3κ3δ2 +3σ1κ2δ1 −2aκ. (13)

Additionally, the frequency is found to be

κ =
(−2σ2σ3 +σ1(σ4 +σ7 −σ8))δ2

2σ1σ13δ3
, (14)

alongside parametric constraints

σ9 = σ10 = σ11 = σ15 = 0, (15)

σ12 +σ13 +σ14 = 0, (16)

and

σ13σ2
1 δ1δ3 +2σ3 (−2σ2σ3 +σ1(σ4 +σ7 −σ8))δ 2

2 = 0. (17)

Thus, Eq. (1) simplifies to

iqt +aqxx +b |q|2 q− iδ1

[
σ1qxxx +σ2 |q|2 qx

]
+σqWt(t)

+δ2

[
σ3qxxxx +σ4 |q|2 qxx +σ5 |q|4 q+σ6 |qx|2 q+σ7q2

xq∗+σ8q∗xxq2
]

− iδ3 [σ12qqxq∗xx +σ13q∗qxqxx +σ14qq∗xqxx] = 0,

(18)

and Eq. (11) becomes

k2 (−6σ3κ2δ2 −3σ1κδ1 +a
)

U ′′+ k2 (2σ14κδ3 +σ4δ2 +σ8δ2)U2U ′′

+
(
σ3κ4δ2 +σ1κ3δ1 −aκ2 +σ2 −ω

)
U +σ3k4δ2U (4)

+
(
−2σ14κ3δ3 −σ4κ2δ2 +σ6κ2δ2 −σ7κ2δ2 −σ8κ2δ2 −σ2κδ1 +b

)
U3

+ k2 (−4(σ13 +σ14)κδ3 +σ6δ2 +σ7δ2)UU ′2 +σ5δ2U5 = 0.

(19)

Also, Equation (19) transforms into

Contemporary Mathematics 5448 | Yakup Yildirim, et al.



k2U (4)+λ6U2U ′′+λ5U ′′+λ4UU ′2 +λ3U5 +λ2U3 +λ1U = 0, (20)

with



λ3 =
σ5

σ3k2 , λ1 =
σ3κ4δ2 +σ1κ3δ1 −aκ2 +

(
σ2 −ω

)
σ3k2δ2

,

λ2 =
b−κ (κ (2σ14κδ3 +(σ4 −σ6 +σ7 +σ8)δ2)+σ2δ1)

σ3k2δ2
,

λ4 =
(σ6 +σ7)δ2 −4(σ13 +σ14)κδ3

σ3δ2
,

λ5 =
−3κ (2σ3κδ2 +σ1δ1)+a

σ3δ2
,

λ6 =
2σ14κδ3 +(σ4 +σ8)δ2

σ3δ2
,

(21)

with σ3 ̸= 0, k ̸= 0 and δ2 ̸= 0. From the requirement that U5 and U (4) are in balance within equation (20), we derive
N = 1, yielding

U (ξ ) = B0 +B1F (ξ ) . (22)

After substituting (22) and (6) into (22), the equations are derived as:



B0
5λ3 +RB0B1

2λ4 +B0
3λ2 +B0λ1 = 0,

12PRk2B1 +QB0
2B1λ6 +Q2k2B1 +QB1λ5 +RB1

3λ4 +5B0
4B1λ3 +3B0

2B1λ2 +B1λ1 = 0,

10B0
3B1

2λ3 +QB0B1
2λ4 +2QB0B1

2λ6 +3B0B1
2λ2 = 0,

10B0
2B1

3λ3 +20PQk2B1 +2PB0
2B1λ6 +QB1

3λ4 +QB1
3λ6 +B1

3λ2 +2PB1λ5 = 0,

5B0B1
4λ3 +PB0B1

2λ4 +4PB0B1
2λ6 = 0,

B1
5λ3 +24P2k2B1 +PB1

3λ4 +2PB1
3λ6 = 0.

(23)

Through solving (23), the following expressions are revealed:
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

k =±

√
−2Pλ5Rλ4 −Q2λ4λ5 −Q2λ5λ6 −Qλ1λ4 −Qλ1λ6 −Qλ2λ5 −λ1λ2

8PQRλ4 −12PQRλ6 −Q3λ4 −Q3λ6 −12PRλ2 −Q2λ2
,

B0 = 0, B1 =±

√
− −24P2Rλ5 +18PQ2λ5 +20PQλ1

8PQRλ4 −12PQRλ6 −Q3λ4 −Q3λ6 −12PRλ2 −Q2λ2
,

λ3 =


12Pλ5Rλ4 −24PRλ5λ6 −3Q2λ4λ5 +6Q2λ5λ6

−2Qλ1λ4 +8Qλ1λ6 −12Qλ2λ5 −12λ1λ2




8PQRλ4 −12PQRλ6 −Q3λ4

−Q3λ6 −12PRλ2 −Q2λ2


2
(

144P2R2λ5
2 −216PQ2Rλ5

2 +81Q4λ5
2 −240PQRλ1λ5 +180Q3λ1λ5 +100Q2λ1

2
) .

(24)

Result 1:
From (7), Eq. (24) is modified to



k =±

√
−λ1λ2 −2λ1λ4 −2λ1λ6 −2λ2λ5 +2λ5λ4 +4λ5λ6

16λ2 +8λ4 −32λ6
,

B0 = 0, B1 =±

√
− 5λ1 −6λ5

2λ2 +λ4 −4λ6
,

λ3 =
(3λ1λ2 −λ1λ4 +4λ1λ6 −6λ2λ5)(2λ2 +λ4 −4λ6)

25λ1
2 −60λ1λ5 +36λ5

2 .

(25)

Accordingly, the mathematical expressions for dark and singular solitons take the form

q(x, t) =±

√
− 5λ1 −6λ5

2λ2 +λ4 −4λ6

× tanh


√
−λ1λ2 −2λ1λ4 −2λ1λ6 −2λ2λ5 +2λ5λ4 +4λ5λ6

16λ2 +8λ4 −32λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)



× e
i
(
− (−2σ2σ3+σ1(σ4+σ7−σ8))δ2

2σ1σ13δ3
x+ωt+σW (t)−σ2t+θ0

)
,

(26)

and
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q(x, t) =±

√
− 5λ1 −6λ5

2λ2 +λ4 −4λ6

× coth


√
−λ1λ2 −2λ1λ4 −2λ1λ6 −2λ2λ5 +2λ5λ4 +4λ5λ6

16λ2 +8λ4 −32λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)



× e
i
(
− (−2σ2σ3+σ1(σ4+σ7−σ8))δ2

2σ1σ13δ3
x+ωt+σW (t)−σ2t+θ0

)
.

(27)

The waveforms expressed in equations (26) and (27) are constrained by the parameters:

(5λ1 −6λ5)(2λ2 +λ4 −4λ6)< 0,

(λ1λ2 −2λ1λ4 −2λ1λ6 −2λ2λ5 +2λ5λ4 +4λ5λ6)(16λ2 +8λ4 −32λ6)< 0.

(28)

Result 2:
With (7), Eq. (24) converts into



k =±
√
−(λ1 +λ5), B0 = 0, B1 =±

√
−20λ1 +18λ5

λ2 +λ4 +λ6
,

λ3 =


12λ1λ2

2 +14λ1λ2λ4 +4λ1λ2λ6 +2λ1λ4
2 −6λ1λ4λ6 −8λ1λ6

2

+12λ2
2λ5 +15λ2λ4λ5 +6λ2λ5λ6 +3λ4

2λ5 −3λ4λ5λ6 −6λ5λ6
2


2
(

100λ1
2 +180λ1λ5 +81λ5

2
) .

(29)

Furthermore, the solution for the bright soliton takes the form

q(x, t) =±

√
−20λ1 +18λ5

λ2 +λ4 +λ6
× sech

[√
−(λ1 +λ5)

(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)]

× e
i
(
− (−2σ2σ3+σ1(σ4+σ7−σ8))δ2

2σ1σ13δ3
x+ωt+σW (t)−σ2t+θ0

)
.

(30)

The wave form expressed in (30) is constrained by the relations:
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(20λ1 +18λ5)(λ2 +λ4 +λ6)< 0, λ1 +λ5 < 0. (31)

Result 3:
With (7), Eq. (24) is modified to



k =±
√
−(λ1 +λ5), B0 = 0, B1 =±

√
20λ1 +18λ5

λ2 +λ4 +λ6
,

λ3 =


12λ1λ2

2 +14λ1λ2λ4 +4λ1λ2λ6 +2λ1λ4
2 −6λ1λ4λ6 −8λ1λ6

2

+12λ2
2λ5 +15λ2λ4λ5 +6λ2λ5λ6 +3λ4

2λ5 −3λ4λ5λ6 −6λ5λ6
2


2
(

100λ1
2 +180λ1λ5 +81λ5

2
) .

(32)

Accordingly, the singular soliton is represented by the solution

q(x, t) =±

√
20λ1 +18λ5

λ2 +λ4 +λ6
× csch

[√
−(λ1 +λ5)

(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)]

× e
i
(
− (−2σ2σ3+σ1(σ4+σ7−σ8))δ2

2σ1σ13δ3
x+ωt+σW (t)−σ2t+θ0

)
.

(33)

Equation (33) defines the wave form, subject to the constraint relations:

(20λ1 +18λ5)(λ2 +λ4 +λ6)> 0, λ1 +λ5 < 0. (34)

Result 4:
Utilizing (7), Eq. (24) changes to



k =±

√
−8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6

8λ2 +λ4 −4λ6
,

B0 = 0, B1 =±

√
− 20λ1 −6λ5

8λ2 +λ4 −4λ6
,

λ3 =
(12λ1λ2 −λ1λ4 +4λ1λ6 −6λ2λ5)(8λ2 +λ4 −4λ6)

4
(

100λ1
2 −60λ1λ5 +9λ5

2
) .

(35)
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Accordingly, the solution that represents the straddled singular-singular soliton is

q(x, t) =±

√
− 20λ1 −6λ5

8λ2 +λ4 −4λ6

×



coth


√
−8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6

8λ2 +λ4 −4λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)



± csch


√
−8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6

8λ2 +λ4 −4λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)





× e
i
(
− (−2σ2σ3+σ1(σ4+σ7−σ8))δ2

2σ1σ13δ3
x+ωt+σW (t)−σ2t+θ0

)
.

(36)

Moreover, the complexiton solution is formulated as

q(x, t) =±

√
− 20λ1 −6λ5

8λ2 +λ4 −4λ6

×



tanh


√
−8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6

8λ2 +λ4 −4λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)



± isech


√
−8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6

8λ2 +λ4 −4λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)





× e
i
(
− (−2σ2σ3+σ1(σ4+σ7−σ8))δ2

2σ1σ13δ3
x+ωt+σW (t)−σ2t+θ0

)
.

(37)

Furthermore, the dark-bright soliton takes the form
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q(x, t) =±

√
− 20λ1 −6λ5

8λ2 +λ4 −4λ6

×



tanh


√
−8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6

8λ2 +λ4 −4λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)



1± sech


√
−8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6

8λ2 +λ4 −4λ6

×
(
x−

(
4σ3κ3δ2 +3σ1κ2δ1 −2aκ

)
t
)





× e
i
(
− (−2σ2σ3+σ1(σ4+σ7−σ8))δ2

2σ1σ13δ3
x+ωt+σW (t)−σ2t+θ0

)
.

(38)

Equations (37)-(39) define the wave forms, constrained by the parameters:

(20λ1 −6λ5)(8λ2 +λ4 −4λ6)< 0,

(8λ1λ2 −4λ1λ4 −4λ1λ6 −4λ2λ5 +λ5λ4 +2λ5λ6)(8λ2 +λ4 −4λ6)< 0.

(39)

4. Results and discussion
This section analyzes the soliton behaviors illustrated in Figures 1-15, covering dark, bright, and hybrid dark-bright

solitons under varying noise levels (σ ) and time steps (t = 2.1 to 3.0). All simulations use a consistent parameter set to
ensure comparability across cases. They are: θ0 = 1, ω = 1, δ2 = 1, δ3 = 1, σ4 = 1, σ3 = 1, σ2 = 1, σ1 = 1, σ7 = 1,
σ8 = 1, σ13 = 1, δ1 = 1, a = 1, k = 1, σ6 = 1, σ14 = 1, and b = 1.

Based on solution (26), the evolution of dark solitons is presented with increasing MWN levels. Figure 1 shows the
soliton profile without noise, highlighting its typical intensity dip through 3D, contour, and 2D plots. As σ increases from
2 to 5 (Figures 2-5), the soliton undergoes gradual deformation: its central dip broadens, amplitude decreases, and phase
coherence weakens. These effects reflect the soliton’s sensitivity to noise, particularly in its spatial structure.

Described by solution (30), bright solitons display a pronounced intensity peak in the noise-free case (Figure 6).
With increasing noise levels (Figures 7-10), the peak becomes less localized and loses height, while the surrounding
region broadens. The 2D and contour plots illustrate these changes clearly, indicating a more pronounced degradation
compared to dark solitons.

Solution (39) governs the hybrid structures combining both dark dips and bright peaks. Without noise (Figure 11),
these solitons maintain distinct features of both types. However, with rising σ (Figures 12-15), the contrast between dark
and bright regions diminishes. The bright peak spreads, and the dark trough becomes shallower, leading to a more uniform,
less defined structure.

Across all soliton types, MWN disrupts localization and coherence. Dark solitons are relatively robust but eventually
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lose contrast. Bright solitons are more susceptible, showing early and significant deformations. Dark-bright solitons
exhibit combined instability effects. These results confirm that MWN plays a critical role in soliton stability, with
implications for real-world optical systems where noise cannot be neglected.

Figure 1. A dark soliton given σ = 0
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Figure 2. A dark soliton given σ = 2

Figure 3. A dark soliton given σ = 3
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Figure 4. A dark soliton given σ = 4

Figure 5. A dark soliton given σ = 5
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Figure 6. A bright soliton given σ = 0
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Figure 7. A bright soliton given σ = 2

Figure 8. A bright soliton given σ = 3
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Figure 9. A bright soliton given σ = 4

Figure 10. A bright soliton given σ = 5
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Figure 11. A bright-dark soliton given σ = 0
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Figure 12. A bright-dark soliton given σ = 2

Figure 13. A bright-dark soliton given σ = 3
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Figure 14. A bright-dark soliton given σ = 4

Figure 15. A bright-dark soliton given σ = 5
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5. Conclusions
This study investigates optical solitons governed by the dispersive concatenation model, which captures the interplay

of dispersion and nonlinearity in optical fibers. Themodel incorporates the Kerr nonlinearity andMWN, the latter modeled
using Itô calculus to represent real-world fluctuations such as thermal and environmental noise.

To find analytical solutions, the F-expansion method is applied, yielding a variety of soliton structures including
bright, dark, singular, and hybrid solitons. The results indicate that MWN primarily affects the soliton phase, leaving the
amplitude largely unchanged. This has important implications for phase-sensitive systems in optical communications.

Figures 1-15 illustrate the soliton dynamics under varying noise levels. Dark solitons become shallower and broader,
bright solitons experience peak deformation, and hybrid solitons show mixed effects. These visual results support the
analytical findings and highlight the destabilizing role of noise.

Compared to previous studies focused on deterministic or noise-free scenarios, this work presents a more realistic
perspective by combining nonlinear dispersion and stochastic perturbations. The broader solution set obtained via the
F-expansion method offers deeper insights into soliton behavior under noisy conditions. The similarity of our research
to the study described in [3] is limited to the common concern for the same model equation. The methods used, however,
are significantly different. The study mentioned, identified as [3], uses a sophisticated direct algebraic method, whereas
our paper proposes the use of the F-expansion method. These are different and independent methods. In addition, our
study offers completely new results that are not considered in the framework of study described in [3]. In addition, the
work introduced in reference [3] is solely focused on presenting solutions, including no graphical analysis. In contrast,
our paper provides a thorough analysis of the solution results, including the use of graphs. More specifically, we have
included graphs that describe the effect of multiplicative white noise on the soliton solution results. These graphically
illustrated results are thoroughly investigated in the results and discussion section, in which we highlight the physical
importance of all the new solution results.

Future work may extend the model by incorporating power-law SPM or analyzing its behavior in advanced optical
media such as dispersion-flattened fibers, birefringent systems, and photonic crystal structures [4–14]. These directions
aim to deepen our understanding of soliton robustness in practical settings and broaden the model’s applicability to
emerging optoelectronic technologies.
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